Coordinate control of host centrosome position, organelle distribution, and migratory response by Toxoplasma gondii via host mTORC2.
نویسندگان
چکیده
The invasion of host cells by Toxoplasma gondii is accompanied by a reorganization of host cell structure, in which the host centrosome and Golgi apparatus are localized to the vacuole, and mitochondria, microtubules, and endolysosomes are recruited to the vacuole perimeter. The mechanism and functional significance of this process have not been well defined. Here, we report that the centrosome-vacuole association was abolished in mammalian target of rapamycin complex 2 (mTORC2)-deficient cells, which also displayed a disordered distribution of perivacuolar host mitochondria and lysosomes. Infection of fibroblasts led to stable, mTORC2-dependent activation of Akt, and Akt inhibition mimicked the effect of mTORC2 ablation on centrosome, mitochondria, and lysosome localization. Mobilization of the centrosome by Akt inhibition was abrogated by inhibitors of glycogen synthase kinase 3 (GSK3), implying that the centrosome is constrained to the vacuole through an mTORC2-Akt-GSK3 pathway. Infected cells were incapable of migration in a wounded monolayer model, and this effect was associated with the inability of centrosomes to reorient in the direction of migration. Both migration and centrosome reorientation were fully restored upon ablation of mTORC2. These findings provide the first linkage of host signals to parasite-mediated host cell reorganization and demonstrate migratory suppression as a novel functional consequence of this process that is associated with mTORC2-mediated centrosome constraint.
منابع مشابه
Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells.
The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by...
متن کاملToxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole
The obligate intracellular protozoan Toxoplasma gondii actively invades mammalian cells and, upon entry, forms its own membrane-bound compartment, named the parasitophorous vacuole (PV). Within the PV, the parasite replicates and scavenges nutrients, including lipids, from host organelles. Although T. gondii can synthesize sphingolipids de novo, it also scavenges these lipids from the host Golg...
متن کاملToxoplasma gondii Is Dependent on Glutamine and Alters Migratory Profile of Infected Host Bone Marrow Derived Immune Cells through SNAT2 and CXCR4 Pathways
The obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1) T. gondii relies on glutamine for optimal infection, replication and viability, and 2) T. gondii-infected bone marrow-derived dendritic cells ...
متن کاملThe Toxoplasma gondii centrosome is the platform for internal daughter budding as revealed by a Nek1 kinase mutant.
The pathology and severity of toxoplasmosis results from the rapid replication cycle of the apicomplexan parasite Toxoplasma gondii. The tachyzoites divide asexually through endodyogeny, wherein two daughter cells bud inside the mother cell. Before mitosis is completed, the daughter buds form around the duplicated centrosomes and subsequently elongate to serve as the scaffold for organellogenes...
متن کاملIn Silico Identification of Specialized Secretory-Organelle Proteins in Apicomplexan Parasites and In Vivo Validation in Toxoplasma gondii
Apicomplexan parasites, including the human pathogens Toxoplasma gondii and Plasmodium falciparum, employ specialized secretory organelles (micronemes, rhoptries, dense granules) to invade and survive within host cells. Because molecules secreted from these organelles function at the host/parasite interface, their identification is important for understanding invasion mechanisms, and central to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 285 20 شماره
صفحات -
تاریخ انتشار 2010